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1. Introduction

The Bohr inequality describes the size of the sum of the moduli of the terms in the series expansion of 
a bounded analytic function. Specifically it states that if f(z) =

∑∞
n=0 anz

n is analytic in the unit disk 
U := {z : |z| < 1} and |f(z)| < 1 for all z ∈ U , then 

∑∞
n=0 |anzn| ≤ 1 for all |z| ≤ 1/3. This inequality 

was obtained by Bohr [10] in 1914, and the constant r0 = 1/3 is known as the Bohr radius. Bohr actually 
obtained the inequality for |z| ≤ 1/6, but subsequently later, Wiener, Riesz and Schur, independently 
established the sharp inequality for |z| ≤ 1/3 [16,23,25]. Other proofs have also been given in [17–19].

More generally, the Bohr radius for bounded analytic functions in the unit disk can be paraphrased in 
terms of its supremum norm, that is, if f(z) =

∑∞
n=0 anz

n, and ‖f‖∞ = sup|z|<1 |f(z)| < ∞, then

∞∑
n=0

∣∣anzn∣∣ ≤ ‖f‖∞
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when |z| ≤ 1/3. Boas and Khavinson [9], and Aizenberg [3,4,6] have extended the inequality to several 
complex variables. More recently Defant et al. [11] obtained the optimal asymptotic estimate for the 
n-dimensional Bohr radius on the polydisk Un.

Operator algebraists have also taken a keen interest in the Bohr inequality, particularly after Dixon [12]
used it to settle in the negative a conjecture on Banach algebras. Pursuant to this construction, Paulsen 
and Singh [18] have extended the Bohr inequality in the context of Banach algebras.

For f(z) =
∑∞

n=0 anz
n, the Bohr inequality can be put in the form

d

( ∞∑
n=0

∣∣anzn∣∣, |a0|
)

=
∞∑

n=1

∣∣anzn∣∣ ≤ d
(
f(0), ∂U

)
, (1)

where d is the Euclidean distance. More generally, a class of analytic (or harmonic) functions f(z) =∑∞
n=0 anz

n mapping U into a domain Ω is said to satisfy a Bohr phenomenon if an inequality of type (1)
holds uniformly in |z| < ρ0, 0 < ρ0 ≤ 1, and for all functions in the class. The notion of the Bohr phenomenon 
was first introduced in [8] for a Banach space X of analytic functions in the disk U . It was shown that under 
the usual norm, the Bohr phenomenon does not hold for the Hardy spaces Hp, 1 ≤ p < ∞. However use of a 
different norm might lead to the occurrence of a Bohr phenomenon. In [8], a characterization of appropriate 
norms was obtained that yielded the Bohr phenomenon for X.

An important notion in complex function theory is subordination. Given two analytic functions f and g, 
the function g is subordinate to f , written g(z) ≺ f(z), if g is the composition of f with an analytic self-map 
w of the unit disk with w(0) = 0. In the case f is univalent, subordination is equivalent to g(U) ⊂ f(U) and 
g(0) = f(0). For additional details on subordination classes, see for example [13, Chapter 6] or [20, p. 35].

To make precise the notion of the Bohr phenomenon for classes of functions, let f(z) =
∑∞

n=0 anz
n be a 

given analytic function in U with f(U) = Ω. Denote by S(f) the class of analytic functions g subordinate 
to f . The class S(f) is said to satisfy a Bohr phenomenon if there is a constant ρ0 ∈ (0, 1] satisfying

∞∑
n=1

∣∣bnzn∣∣ ≤ d
(
f(0), ∂Ω

)

for all |z| < ρ0, and for any g(z) =
∑∞

n=0 bnz
n ∈ S(f). The constant ρ0 is called the Bohr radius.

When f is convex, that is, f(U) is a convex domain, Aizenberg [5, Theorem 2.1] showed that the Bohr
radius for S(f) is ρ0 = 1/3, a result which includes (1) when Ω = U . Abu-Muhanna [1, Theorem 1] showed 
that S(f) has a Bohr phenomenon for f univalent, and that the sharp Bohr radius is 3 − 2

√
2 ∼= 0.17157. 

Equality is attained for the Koebe function f(z) = z/(1 − z)2. In a recent paper [15], we had studied the 
Bohr phenomenon for functions mapping the unit disk into the exterior of a compact convex set.

In Section 2, the Bohr radius is obtained for the class of analytic functions mapping U into a concave-
wedge domain. This result established a link between the results of Aizenberg [5] and Abu-Muhanna [1]. 
Section 3 deals with subordinating families to convex or starlike functions. Specifically the class R(α, γ, h)
consisting of analytic functions f satisfying f(z) +αzf ′(z) + γz2f ′′(z) ≺ h(z) in U is considered. The Bohr
radius is obtained for R(α, γ, h) when h is respectively convex or starlike. The final section is devoted to 
finding the Bohr radius for bounded harmonic mappings in the unit disk. Connections of the results obtained 
in this paper to several earlier works will also be illustrated.

2. Bohr’s radius for concave-wedge domains

A link to the earlier results of Aizenberg [5] and Abu-Muhanna [1] could be established by considering 
the concave-wedge domains

Wα :=
{
w ∈ C : | argw| < απ

}
, 1 ≤ α ≤ 2. (2)
2
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In this instance, the conformal map of U onto Wα is given by

Fα,t(z) = t

(
1 + z

1 − z

)α

= t

(
1 +

∞∑
n=1

Anz
n

)
, t > 0. (3)

When α = 1, the domain reduces to a convex half-plane, while the case α = 2 yields a slit domain. Denote 
by SWα

the class consisting of analytic functions f mapping the unit disk U into the wedge domain Wα

given by (2).
The following result of [2] will be needed.

Proposition 2.1. If F is an analytic univalent function mapping U onto Ω, where the complement of Ω is 
convex and F (z) 
= 0, then any analytic function f ∈ S(Fn), n = 1, 2, . . . , can be expressed as

f(z) =
∫

|x|=1

Fn(xz) dμ(x)

for some probability measure μ on the unit circle |x| = 1. Consequently,

f(z) =
∫

|x|=1

exp
(
F (xz)

)
dμ(x)

for every f ∈ S(exp(F )).

The following result will also be helpful.

Lemma 2.2. Let Fα,t(z) = t((1 + z)/(1 − z))α = t(1 +
∑∞

n=1 Anz
n) be given by (3), α ∈ [1, 2]. Then An > 0

for all n.

Proof. Evidently

F ′
α,t(z) = 2α

1 − z2Fα,t(z). (4)

Expanding (4) leads to

∞∑
n=1

nAnz
n−1 = 2α

(
1 +

∞∑
n=1

z2n

)(
1 +

∞∑
n=1

Anz
n

)
,

and thus

An+1 = 2α
n + 1

[n2 ]∑
k=0

An−2k (5)

for all n ≥ 1, where [ ] is the greatest integer function and A0 = 1.
It follows by induction that

An = pn(α) (6)

is a polynomial of degree n with positive coefficients. Indeed it holds for n = 1 since A1 = 2α > 0. Assuming 
that (6) holds for n = m, then (5) yields
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Am+1 = 2α
m + 1

[m2 ]∑
k=0

Am−2k = 2α
m + 1

[m2 ]∑
k=0

pm−2k(α) = pm+1(α)

where

pm+1(α) = 2α
m + 1

[m2 ]∑
k=0

pm−2k(α).

Since pm+1 is a polynomial of degree m + 1 with positive coefficient in each term, evidently (6) is true for 
all n ≥ 1. Consequently, An = pn(α) > 0 for all n ≥ 1. �

The following are the main results for this section.

Theorem 2.3. Let α ∈ [1, 2]. If f(z) = a0 +
∑∞

n=1 anz
n ∈ SWα

with a0 > 0, then

∞∑
n=1

∣∣anzn∣∣ ≤ d(a0, ∂Wα)

for |z| ≤ rα = (21/α − 1)/(21/α + 1). The function f = Fα,a0 in (3) shows that the Bohr radius rα is sharp.

Proof. Write

f∗(z) =
∞∑

n=0
|an|zn.

Since f ∈ S(Fα,a0), it follows from Proposition 2.1 and Lemma 2.2 that

f∗(r) − a0 ≤ a0

∞∑
n=1

Anr
n = a0

[(
1 + r

1 − r

)α

− 1
]

= d(a0, ∂Wα)
[(

1 + r

1 − r

)α

− 1
]
≤ d(a0, ∂Wα)

for |z| = r ≤ rα, where rα is the smallest positive root of the equation(
1 + r

1 − r

)α

− 1 = 1.

Thus rα = (2 1
α − 1)/(2 1

α + 1). �
Theorem 2.4. Let α ∈ [1, 2]. If f(z) = a0 +

∑∞
n=1 anz

n ∈ SWα
, then

∞∑
n=0

∣∣anzn∣∣− |a0|∗ ≤ d
(
|a0|∗, ∂Wα

)

for |z| ≤ rα = (21/α − 1)/(21/α + 1), where |a0|∗ = Fα,1(|F−1
α,1(a0)|) and Fα,1 is given by (3). The function 

f = Fα,|a0|∗ shows that the Bohr radius rα is sharp.

Proof. Since f ∈ SWα
, there exists b ∈ U such that Fα,1(b) = a0. Let

ϕ(z) =
∞∑

bnz
n = z + b

1 + b̄z
= b +

(
1 − |b|2

) ∞∑
(−b̄)n−1zn.
n=0 n=1
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Then (Fα,1 ◦ ϕ)(0) = Fα,1(ϕ(0)) = a0 = f(0) which yields

f ≺ Fα,1 ◦ ϕ. (7)

Next, let |a0|∗ = Fα,1(|b|). Then

|a0|∗ = Fα,1
(∣∣F−1

α,1(a0)
∣∣) ≥ ∣∣Fα,1

(
F−1
α,1(a0)

)∣∣ = |a0|.

Now the function

ϕ∗(z) =
∞∑

n=0
|bn|zn = |b| + (1 − 2|b|2)z

1 − |b|z

maps the disk |z| < 1/3 into U . Thus G∗(z) = Fα,1(ϕ∗(z)) satisfies

G∗ ≺ Fα,|a0|∗ (8)

for |z| < 1/3. Further for any analytic functions g1, g2 defined on U ,

(g1 + g2)∗
(
|z|

)
≤ g∗1

(
|z|

)
+ g∗2

(
|z|

)
and (g1g2)∗

(
|z|

)
≤ g∗1

(
|z|

)
g∗2
(
|z|

)
which give

(Fα,1 ◦ ϕ)∗(r) ≤ G∗(r). (9)

Hence using (7), (8) and (9) together with Proposition 2.1, it follows that

f∗(r) ≤ (Fα,1 ◦ ϕ)∗(r) ≤ G∗(r) ≤ Fα,|a0|∗(r) = |a0|∗
(

1 + r

1 − r

)α

for r ≤ 1/3. Consequently, f∗(r) − |a0|∗ ≤ |a0|∗ = d(|a0|∗, ∂Wα) provided r ≤ rα, where rα is the smallest 
positive root of

(
1 + r

1 − r

)α

− 1 = 1,

that is, rα = (2 1
α − 1)/(2 1

α + 1). �
Remark 2.5. Since α ∈ [1, 2], it follows that 0.17157 ≈ (

√
2 − 1)/(

√
2 + 1) ≤ rα ≤ 1

3 .

Remark 2.6. If a0 ≥ 1, then |a0|∗ = a0 and Theorem 2.4 is equivalent to Theorem 2.3. However the case 
0 < a0 < 1 gives |a0|∗ = 1/a0.

Remark 2.7. The Bohr radius for the half-plane is r1 = 1/3, and r2 = 3 − 2
√

2 for the slit-map. Since every 
convex domain lies in a half-plane, it readily follows from Theorem 2.3 that the Bohr radius for convex 
domains is 1/3. When the class of functions is subordinate to an analytic univalent function, it follows from 
de Brange’s Theorem [14] that the moduli of its Taylor’s coefficients are bounded by the coefficients of the 
slit-map, which from Theorem 2.3, readily yields the Bohr radius 3 − 2

√
2 for this class [1].
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3. Second-order differential subordination

For α ≥ γ ≥ 0, and for a given analytic convex function h ∈ A, let

R(α, γ, h) :=
{
f ∈ A : f(z) + αzf ′(z) + γz2f ′′(z) ≺ h(z), z ∈ U

}
.

The investigation of such functions f can be seen as an extension to the study of the class

R(α, h) =
{
f ∈ A : f ′(z) + αzf ′′(z) ≺ h(z), z ∈ U

}
or its variations for an appropriate function h. This class has been investigated in several works, and more 
recently in [24,26]. It was shown in Ali et al. [7] that f(z) ≺ h(z) whenever f ∈ R(α, γ, h). The notion of 
convolution will be needed to deduce the latter assertion.

Denote by A the class of all analytic functions f in U . For two functions f(z) =
∑∞

n=0 anz
n and 

g(z) =
∑∞

n=0 bnz
n in A, the Hadamard product (or convolution) of f and g is the function f ∗ g defined by

(f ∗ g)(z) =
∞∑

n=0
anbnz

n.

The following auxiliary function will be useful: let

φλ(z) =
1∫

0

dt

1 − ztλ
=

∞∑
n=0

zn

1 + λn
.

From [21] it is known that φλ is convex in U provided Reλ ≥ 0.
Now for α ≥ γ ≥ 0, let

ν + μ = α− γ, μν = γ,

and

q(z) =
1∫

0

1∫
0

h
(
ztμsν

)
dtds = (φν ∗ φμ) ∗ h(z). (10)

Since q is the convolution of convex maps, q itself is convex [22]. It is also easily verified that q ∈ R(α, γ, h). 
In [7], Ali et al. showed that

f(z) ≺ q(z) ≺ h(z)

for every f ∈ R(α, γ, h). Thus R(α, γ, h) ⊂ S(h). The following result gives the best Bohr radius for 
R(α, γ, h).

Theorem 3.1. Let f(z) =
∑∞

n=0 anz
n ∈ R(α, γ, h), and h be convex. Then

∞∑
n=1

∣∣anzn∣∣ ≤ d
(
h(0), ∂h(U)

)

for all |z| ≤ rCV (α, γ), where rCV (α, γ) is the smallest positive root of the equation

(φμ ∗ φν)(r) − 1 =
∞∑ 1

(1 + μn)(1 + νn)r
n = 1

2 .

n=1
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Further, this bound is sharp. An extremal case occurs when f(z) := q(z) as defined in (10) and h(z) :=
l(z) = z

1−z .

Proof. Let F (z) = f(z) + αzf ′(z) + γz2f ′′(z) ≺ h(z). Then

F (z) =
∞∑

n=0

[
1 + αn + γn(n− 1)

]
anz

n,

and

1
h′(0)

∞∑
n=1

[
1 + αn + γn(n− 1)

]
anz

n = F (z) − F (0)
h′(0) ≺ h(z) − h(0)

h′(0) .

It follows from [13, Theorem 6.4(i)] that

∣∣∣∣1 + αn + γn(n− 1)
h′(0)

∣∣∣∣|an| ≤ 1, n ≥ 1.

Hence

|an| ≤
|h′(0)|

1 + (μ + ν)n + μνn2 , n ≥ 1,

which readily yields

∞∑
n=1

|an|rn ≤
∞∑

n=1

|h′(0)|
1 + (μ + ν)n + μνn2 r

n.

Since H(z) = h(z)−h(0)
h′(0) is a normalized convex function in U , it follows that

d(0, ∂Ω) ≥ 1/2, Ω = H(U),

implying

d
(
h(0), ∂h(U)

)
= inf

ζ∈∂U

∣∣h(ζ) − h(0)
∣∣ ≥ |h′(0)|

2 , z ∈ U.

Thus

∞∑
n=1

|an|rn ≤ 2d
(
h(0), ∂h(U)

)( ∞∑
n=1

1
(1 + μn)(1 + νn)r

n

)
,

and the Bohr radius rCV (α, γ) is the smallest positive root of the equation

∞∑
n=1

1
(1 + μn)(1 + νn)r

n = 1
2 . � (11)

The accompanying graph in Fig. 1 describes the extremal case. With h(z) := l(z) = z/(1 − z), then 
d(h(0), ∂h(U)) = 1/2, and q(z) = (φμ ∗ φν) ∗ l(z) maps the Bohr circle of radius rCV into {w : |w| ≤ 1/2}. 
Here the image of the Bohr circle is depicted by a bold closed curve.
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Fig. 1. Image of the Bohr circle under q(z) = (φμ ∗ φν) ∗ z
1−z for α = 3, γ = 1.

Table 1
The Bohr radius rCV (α, γ) for different α and γ.

α rCV (α, 0)
0 0.333333
0.1 0.365245
1 0.582812
10 0.994200
20 0.999958
28 0.999999

α γ rCV (α, γ)
0 0 0.333333
1 0.5 0.649755
1 0.9 0.684027
4 0.9 0.981325
4 1 0.986793
4 4/3 0.999999

Remark 3.2. The Bohr radius rCV (0, 0) = 1/3 was obtained in [5, Theorem 2.1].

From (11), it is known that for any f ∈ R(α, γ, h) and h convex, the Bohr radius rCV (α, γ) can be found 
by solving the equation

∞∑
n=1

1
1 + αn + γn(n− 1)r

n =
∞∑

n=1

1
(1 + μn)(1 + νn)r

n = 1
2

for the smallest positive root. Table 1 gives the values of the Bohr radius for different choices of the 
parameters α and γ. Note that rCV (α, γ) approaches 1 for increasing α and γ.

The following theorem deals with subordination to a starlike function.

Theorem 3.3. Let f(z) =
∑∞

n=0 anz
n ∈ R(α, γ, h), and h be starlike. Then

∞∑
n=1

∣∣anzn∣∣ ≤ d
(
h(0), ∂h(U)

)

for all |z| ≤ rST (α, γ), where rST(α, γ) is the smallest positive root of the equation

(φμ ∗ φν)(r) − 1 =
∞∑

n=1

n

(1 + μn)(1 + νn)r
n = 1

4 .

This bound is sharp. An extremal case occurs when f(z) := q(z) as defined in (10) and h(z) := k(z) = z
2 .
(1−z)
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Proof. Since

F (z) = f(z) + αzf ′(z) + γz2f ′′(z) =
∞∑

n=0

[
1 + αn + γn(n− 1)

]
anz

n ≺ h(z),

it follows that

1
h′(0)

∞∑
n=1

[
1 + αn + γn(n− 1)

]
anz

n = F (z) − F (0)
h′(0) ≺ h(z) − h(0)

h′(0) = H(z).

Thus [13, Theorem 6.4(ii)]
∣∣∣∣1 + αn + γn(n− 1)

h′(0)

∣∣∣∣|an| ≤ n, n ≥ 1,

which yields

∞∑
n=1

|an|rn ≤
∞∑

n=1

n|h′(0)|
1 + (μ + ν)n + μνn2 r

n.

Since H(z) is a normalized starlike function in U , then
∣∣H(z)

∣∣ ≥ 1/4, z ∈ ∂U,

implying

d
(
h(0), ∂h(U)

)
= inf

ζ∈∂U

∣∣h(ζ) − h(0)
∣∣ ≥ |h′(0)|

4 , z ∈ U.

Thus

∞∑
n=1

|an|rn ≤ 4d
(
h(0), ∂h(U)

)( ∞∑
n=1

n

(1 + μn)(1 + νn)r
n

)
,

and the Bohr radius rST(α, γ) is the smallest positive root of the equation

∞∑
n=1

n

(1 + μn)(1 + νn)r
n = 1

4 . � (12)

If h is starlike, then q as given in (10) is starlike. Fig. 2 describes an extremal case. Here d(h(0), ∂h(U)) =
1/4 for h(z) := k(z) = z/(1 − z)2, and q(z) = (φμ ∗ φν) ∗ k(z) maps the Bohr circle, depicted as the bold 
closed curve, into {w : |w| ≤ 1/4}.

Remark 3.4. The Bohr radius rST(0, 0) = 3 − 2
√

2 is equal to the Bohr radius for the class of analytic 
functions subordinated to a univalent function, see [1, Theorem 1].

From (12), the Bohr radius rST can be found by solving the equation

∞∑
n=1

n

1 + αn + γn(n− 1)r
n =

∞∑
n=1

n

(1 + μn)(1 + νn)r
n = 1

4

for a positive real root. Several values of rST(α, γ) are listed in Table 2.
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Fig. 2. Image of the Bohr circle under q(z) = (φμ ∗ φν) ∗ z
(1−z)2 for α = 3, γ = 1.

Table 2
The Bohr radius rST (α, γ) for various α and γ.

α r0(α, 0)
0 0.171573
0.1 0.188154
1 0.308210
10 0.723763
100 0.961586
1 000 000 0.999996

α γ r0(α, γ)
0 0 0.171573
1 0.1 0.315797
2 1 0.459619
10 1 0.765923
100 10 0.994215
100 35 0.999963

4. Bohr radius for bounded harmonic functions

We conclude by finding the Bohr radius for bounded harmonic functions in the disk. Let D be a bounded 
set and denote by D the closure of D. Let Dmin be the smallest closed disk containing the closure of D. 
Thus

D ⊆ Dmin ⊆ E

for any closed disk E containing D. The following two lemmas are required to deduce the main theorem in 
this section.

Lemma 4.1. (See [1].) If g(z) =
∑∞

n=0 bnz
n ∈ S(f), and f(z) =

∑∞
n=1 anz

n is convex with f(U) = Ω, then

|bn| ≤ |a1| ≤ 2d
(
f(0), ∂Ω

)
.

Lemma 4.2. Let f(z) = h(z) +g(z) =
∑∞

n=0 anz
n+

∑∞
n=1 bnz

n be a complex-valued harmonic function in U . 
If f maps U into a bounded domain D, then

∣∣eiμan + e−iμbn
∣∣ ≤ 2

(
ρ−

∣∣Re eiμ(a0 − w0)
∣∣), (13)

|an| + |bn| ≤
4
π
ρ, (14)

for any real μ and any n ≥ 1, where ρ and w0 are respectively the radius and center of Dmin.
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Proof. Now f(U) is contained in a disk with radius ρ and center w0, and so

ρ =
∣∣f(z) − w0

∣∣ + d
(
f(z), ∂Dmin

)
, or

∣∣f(z) − w0
∣∣ = ρ− d

(
f(z), ∂Dmin

)
;

that is,

∣∣f(z) − w0
∣∣ ≤ ρ

for all z ∈ U . Consequently

∣∣Re
(
eiμ

[
f(z) − w0

])∣∣ ≤ ∣∣eiμ[f(z) − w0
]∣∣ ≤ ρ

for any real μ and any z ∈ D.
Let

Wμ(z) = eiμ
(
h(z) − w0

)
+ e−iμg(z).

Then Wμ is analytic, Wμ(0) = eiμ(a0 − w0) and | ReWμ(z)| = | Re(eiμ[f(z) − w0])| < ρ.
The function

F (z) = 2i
π
ρ log 1 + z

1 − z

maps U conformally onto the strip P = {ζ : | Re ζ| < ρ}. As eiμ(a0 − w0) ∈ P , choose b ∈ U so that 
F (b) = eiμ(a0 − w0) and let

ϕ(z) = z + b

1 + b̄z
.

Then F (ϕ(0)) = eiμ(a0 − w0) = Wμ(0), and hence Wμ is subordinate to F ◦ ϕ.
Simple calculations give

(F ◦ ϕ)′(0) = 4i(1 − |b|2)
π(1 − b2) ρ and so

∣∣(F ◦ ϕ)′(0)
∣∣ ≤ 4

π
ρ. (15)

As F ◦ ϕ is convex and

d
(
F
(
ϕ(0)

)
, ∂P

)
= ρ−

∣∣ReWμ(0)
∣∣ = ρ−

∣∣Re eiμ(a0 − w0)
∣∣,

Lemma 4.1 implies (13). In addition, Lemma 4.1 and (15) imply

∣∣eiμan + e−iμbn
∣∣ ≤ 4

π
ρ.

If an = 0, then inequality (14) is evident. If an 
= 0, then

∣∣eiμan + e−iμbn
∣∣ = |an|

∣∣∣∣1 + e−2iμ
(
bn
an

)∣∣∣∣,
and μ can be chosen so that e−2iμ(bn/an) = |bn/an|, which gives (14). �
Remark 4.3. When D = U , Lemma 4.2 reduces to Lemma 4 in [1].
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The following is our main result in this section.

Theorem 4.4. Let f(z) = h(z) + g(z) =
∑∞

n=0 anz
n +

∑∞
n=1 bnz

n be a complex-valued harmonic function 
in U . If f : U → D for some bounded domain D, then, for |z| ≤ 1/3,

∞∑
n=1

∣∣anzn∣∣ +
∞∑

n=1

∣∣bnzn∣∣ ≤ 2
π
ρ (16)

and

∞∑
n=1

∣∣eiμan + e−iμbn
∣∣|z|n +

∣∣Re eiμ(a0 − w0)
∣∣ ≤ ρ, (17)

where ρ and w0 are respectively the radius and center of Dmin.
The bound 1/3 is sharp as demonstrated by an analytic univalent mapping f from U onto D. In particular, 

if D is an open disk with radius ρ > 0 centered at ρw0, then sharpness is shown by the Möbius transformation

ϕ(z) = eiμ0ρ

(
z + a

1 + az
+ |w0|

)

for some 0 < a < 1 and μ0 satisfying w0 = |w0|eiμ0 .

Proof. If |z| = 1/3, then it follows from (13) that

∞∑
n=1

∣∣eiμan + e−iμbn
∣∣∣∣zn∣∣ ≤ ρ−

∣∣Re eiμ(a0 − w0)
∣∣,

and (17) is evident. On the other hand, (14) yields

|an| + |bn| ≤
4
π
ρ,

and with |z| = 1/3 gives

∞∑
n=1

∣∣anzn∣∣ +
∞∑

n=1

∣∣bnzn∣∣ ≤ 1
2

(
4
π
ρ

)
= 2

π
ρ,

which is (16).
For sharpness, consider the Möbius transformation

ϕ(z) = eiμ0ρ

(
z + a

1 + az
+ |w0|

)
, a > 0.

Then

ϕ(z) =
∞∑

n=0
anz

n = eiμ0ρ
(
a + |w0|

)
+ eiμ0ρ

(
1 − a2) ∞∑

n=1
(−a)n−1zn

yields

ϕ∗(z) =
∞∑

|an|zn = ρ
(
a + |w0|

)
+

∞∑
ρ
(
1 − a2)an−1zn = ρ

(
2a + |w0|

)
+ ρ

(
z − a

1 − az

)
.

n=0 n=1
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For any fixed r0, a brief computation shows that

1
ρ
ϕ∗(r0) − |w0| = a + (1 − 2a2)r0

1 − ar0
≥ 1

provided r0 ≥ 1/(1 + 2a), or equivalently a ≥ (1/2)(1/r0 − 1). Hence for any r0 > 1/3, there exists an a
satisfying 1 > a ≥ (1/2)(1/r0 − 1) where (17) does not hold in the open disk D with radius ρ > 0 centered 
at ρw0. Hence the bound 1/3 is best possible. �
Remark 4.5. In the case D is the unit disk U , Theorem 4.4 reduces to Theorem 2 in [1].
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